Status of Climate Modeling at NCAR The Community Climate System Model

Bill Collins and Jeff Kiehl

National Center for Atmospheric Research Boulder, Colorado

- Configuration of CCSM3
- Improvements in the physical formulation
- Distribution and interaction with climate community
- Application to IPCC
- The near-term future of CCSM

Development History of CCSM

CSM 1.0

June 1996

New ocean, land, sea-ice models

New physics in atmosphere

CCSM 2.0

May 2002

New physics in all models

CCSM 3.0

June 2004

Configuration of CCSM for IPCC

Component Models in CCSM

Atmosphere

- Multiple dynamical cores: SLD, Eulerian, & Finite Volume
- Generalized 2D decomposition of grid
- Resolutions with most heritage: T31, T42, and T85 (L26)

Ocean

- Derivative of LANL Parallel Ocean Program
- Grid: spherical in S. hemisphere, orthogonal curvilinear in N. hemisphere
- Standard resolution: 320 x 384 (L40)

Land Surface

- Superset of NCAR LSM and Georgia Tech BATS
- Same horizontal resolution as atmosphere
- 10 layers for soil, up to 5 for snowpack

Sea Ice

Up to 5 categories of sea-ice thickness

Atmospheric Dynamics and Resolution

- Goal for IPCC: T85 (1.4°) or equivalent FV resolution
 - Improved resolution for regional impact studies
 - Improved resolution for fidelity in coastal stratus regions
- Recommendation on atmospheric dynamics:
 - Eulerian for standard IPCC scenario applications
 - Finite Volume for future development and experimentation
- Goal for CCSM: Single physics package for multiple dynamics & resolutions:

Dvnamics

Technical Infrastructure

- Portability: CCSM is designed to run on
 - IBM SP
 - HP Compaq
 - SGI Origin and Altix systems
 - Linux clusters
 - NEC and Cray vector systems
- Flexibility: Earth System Modeling Framework (ESMF)
- Simplicity:

Abstracted coupling between physics & dynamics

Changes to Physics in CAM3

- Clouds and condensate:
 - Improved prognostic cloud water & moist processes
 - Transfer of mixed phase precipitation to land surface
 - Improved cloud parameterization
- Radiation:
 - Shortwave forcing by diagnostic aerosols
 - Updated SW scheme for H2O absorption
 - Updated LW scheme for LW absorption and emission
- Surface models:
 - Introduction of CLM 2.2
 - Reintroduction of Slab Ocean Model (SOM)
- Energy fixers for dynamics + diagnostics

Increased Cloud Condensate

- Separate cloud liquid and ice variables
- · Advect cloud condensate
- Include latent heat of fusion
- Use ice & water variables for cloud optics
- New dependence on temperature for cirrus particle size
- Sedimentation of cloud droplets and ice particles
- Modified evaporation of rain

Increased Cloud Amounts

- PBL height constrained
- Rain rate > 0
- Convection cloud amounts from convective mass fluxes
- Stratocumulus clouds in lowest 2 levels
- Changes to autoconversion thresholds
- Changes to relative humidity thresholds
- Fall speed of droplets is function of effective radius

 $\Delta NET_{TOA} = -4.5 \text{ Wm}^{-2}$ $NET_{TOA} = 0.53 \text{ Wm}^{-2}$

Global Aerosol Assimilation Climatology

Addition of Prescribed Aerosol Forcing

Changes in Longwave Cooling Rates:

New H2O Lines and Continuum

Change in LBL Cooling

First CERES-II Workshop March 30, 2004

Change in CAM Cooling

Global Decrease in Longwave Fluxes

Changes in Shortwave Heating Rates:

New H2O Lines and Continuum

Global Increase in SW Heating Rates

Global Decrease in Surface Insolation

Surface Temperatures: 1990 Integration

Biases in Surface Temperatures

Community Involvement in CCSM

- · CCSM3 public release: June 2, 2004
- · Special J. Climate issue: Fall 2005

The IPCC Integrations

Three phases:

- 1. Pre-industrial (1870)
- 2. 20th Century (1870-2000)
- 3. Emissions Scenarios (2000-2200)

Timeline for IPCC Integrations

Difference in Temperatures: 1870 - 1990

Development Plans for CCSM, 2004-08

http://www.ccsm.ucar.edu/management/

CCSM: The Next Two Years

Roadmap to the future

- Climate sensitivity from IPCC studies
- Process studies from GFDL collaboration, CPTs
- Studies of higher resolution and "benchmark" calculations
- News physics/dynamics from Science Plan
- Integration of climate and chemistry
 - Ocean and land biogeochemistry
 - Prognostic aerosols
 - Tropospheric chemistry
 - Physical and chemical model of stratosphere-thermosphere
 - Isotopes of H₂O and CO₂
 - Tracers

The Evolution of CCSM

